rjxai-xml-roberta model card
By feng xiang
Overview
This model is a fine-tuned version of xlm-roberta-base on the rjxdataset-textclassification-chinese-46000 dataset.
Dataset
DatasetDict({
train: Dataset({
features: ['label', 'text', 'input_ids', 'token_type_ids', 'attention_mask'],
num_rows: 36800
})
valid: Dataset({
features: ['label', 'text', 'input_ids', 'token_type_ids', 'attention_mask'],
num_rows: 4600
})
test: Dataset({
features: ['label', 'text', 'input_ids', 'token_type_ids', 'attention_mask'],
num_rows: 4600
})
})
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
eval dataset results
{‘accuracy’: 0.9995652173913043}
Training time return
Training seconds: 4489